Determine the growth or decay factor for the following rates.

1) 5% growth
2) 12% decay
3) 30% growth
4) 98% decay
5) 1% decay
6) 300% growth
7) 0.85% growth
8) 2.5% decay
9) tripling
10) halving

State whether the formula models growth or decay. Graph the function in you calculator to check your answer.
11) $y=3^{x}$
12) $y=0.25^{x}$
13) $f(x)=1.01^{2 x}$
14) $f(x)=0.033^{x}$
15) $g(x)=6 \cdot 5^{x}$
16) $\mathrm{k}(\mathrm{x})=6 \cdot\left(\frac{1}{2}\right)^{x}$

Solve each growth and decay problem.
17) E.coli bacteria double in population every thirty minutes. If the initial population is 85 , what is the population of bacteria after three hours? After one day?
18) You decide to borrow money at 22% interest per year, how much will you owe on a loan of $\$ 5,000$ after one year? What about after three years?
25) John invests $\$ 18,000$ at a rate of 4.5% compounded annually. What will his new balance be after 6 years?
25) John invests $\$ 18,000$ at a rate of 4.5% compounded annually. What will his new balance be after 6 years?
26) You invest $\$ 1,000$ at a rate of 3% compounded quarterly. What will your new balance be after 5 years?
26) You invest $\$ 1,000$ at a rate of 3% compounded quarterly. What will your new balance be after 5 years?
19) The population of Bloom Falls, Mass. (population 937) is slowly moving to a bigger city. Every year the population drops by 4.5%. What is the population after 3 years?
20) You bought a Boston Whaler in 2004 for $\$ 12,500$. The boat's value depreciates by 7% a year. How much is the boat worth in 2012? What will it be worth in 2020 ?
21) The original value of a painting is $\$ 1400$, and the value increases by 9% each year. Write an exponential growth function to model this situation. Then find the value of the painting in 25 years.
22) The po;ulation of a town is decreasing at a rate of 1% per year. In 2000 there were 1300 people. Write an exponential decay function to model this situation. Then find the population in 2008.
23) Maria's parents invested $\$ 14,000$ at 6% per year compounded monthly. How much money will there be in the account after 10 years?
24) Find the final value of $\$ 2000$ invested at an interest rate of 3% compounded quarterly for 8 years.
25) John invests $\$ 18,000$ at a rate of 4.5% compounded annually. What will his new balance be after 6 years?
26) You invest $\$ 1,000$ at a rate of 3% compounded quarterly. What will your new balance be after 5 years?

Answers to (ID: 1)

1) 1.05
2) 0.88
3) 1.3
4) 0.02
5) 0.99
6) 4
7) 1.0085
8) 0.975
9) 3
10) $\frac{1}{2}$
11) Growth
12) Decay
13) Growth
14) Decay
15) Growth
16) Decay
17) 5,440 ; $23,925,373,020,405,760$
18) $\$ 6,100$; $\$ 9,079.24$
19) Approximately 816
20) 2012: $\$ 6,994.77$
2020: \$3,914.15
21) $\mathrm{y}=1400 \cdot 1.09^{t} ; \$ 12,072.31$
22) $y=1300 \cdot 0.99^{t}$; Approx. 1200 people
23) Approximately $\$ 25,471.55 \quad$ 24) Approximately $\$ 2540.22 \quad$ 25) Approximately $\$ 23,440.68$
24) Approximately $\$ 1,161.18$
25) No solution. 28) $\left\{-\frac{2}{3}\right\}$
26) $\{-2\}$
27) $\left\{\frac{1}{2}\right\}$
28) $\left\{-\frac{5}{6}\right\}$
29) $\{0\}$
30) $\{0\}$
31) $\left\{\frac{1}{5}\right\}$
