\qquad
YouTube: Fort Bend Tutoring Solving Quadratic Equations: The Zero-Factor Property

Zero-Factor Property - The Zero Product Property simply states that if $\mathrm{ab}=0$, then either $\mathrm{a}=0$ or $\mathrm{b}=0$ (or both). A product of factors is zero if and only if one or more of the factors is zero. This is particularly useful when solving quadratic equations.

Solve the following equations using the zero-factor property

Examp	Fort Bend Video	Try with a partner	Try it on your own
1.	$(x+3)(x-4)=0$	$(2 a+1)(a-5)=0$	$(2 \mathrm{k}+5)(3 \mathrm{k}-1)=0$
2.	$\mathrm{x}^{2}+8 \mathrm{x}+15=0$	$\mathrm{b}^{2}+2 \mathrm{~b}-35=0$	$\mathrm{r}^{2}-8 \mathrm{r}+12=0$
3.	$5 \mathrm{x}^{2}-30 \mathrm{x}=0$	$4 w^{2}-28 w=0$	$3 p^{2}-27 p=0$
4.	$5 x^{2}-11 x=-2$	$2 n^{2}=-5 n-2$	$3 \mathrm{~d}^{2}+4=8 \mathrm{~d}$
5.	$c(c-11)=-18$	$b(b+8)=-7$	$x(x-11)=-24$

6. $2 x^{3}=9 x^{2}-4 x$	$3 p^{3}=2 p^{2}+5 p$	$n^{3}=11 n^{2}-10 n$
7.	$-8 n^{2}-16 n-8=0$	$-2 x^{2}+20 x-18=0$
8.	$5 \mathrm{v}^{2}+31 \mathrm{~m}-10=0$	

