Term	How to find it
Vertical Asymptotes - vertical lines which correspond to the zeros of the denominator of the rational function. Tells you how the function will behave as y approaches $\pm \infty$. It will not cross the vertical asymptote as y approaches $\pm \infty$. This function has a vertical asymptote at: $x=$	

Horizontal Asymptote - a horizontal line that tells you a how a function will behave as x approaches $\pm \infty$. It will not cross the horizontal asymptote as x approaches $\pm \infty$.

This function has a horizontal asymptote at
$y=$
\mathbf{x} - intercept/s - The place where a function crosses the x -axis. Also known as the solution/s ($\mathrm{x}=$) of any function. The point where $\mathrm{y}=0$.

Can be found by setting the numerator equal to zero and solving for x , or graphing the rational function in $y^{1}=$ and graphing $y^{2}=0$. Hit graph. Hit $2^{\text {nd }}$ \rightarrow Trace \rightarrow Intersect, go over the x -intercept and hit enter 3 times.

This function an \mathbf{x}-intercept/solution at:

This function an x intercept/solution
\mathbf{y} - intercept - The place where the function crosses the y-axis. The point where $\mathrm{x}=0$.

The y - intercept is never the solution to any function. The x-value of the x - intercept (see above) is always the solution to any function.

Can be found by evaluating the function at $\mathrm{f}(\mathrm{x})$ where $\mathrm{x}=0$.
This function has a y-intercept at

How to graph rational functions steps:

1. Find the vertical asymptotes by setting the denominator equal to 0 and solving for x . Draw a vertical dotted line at the vertical asymptote and label it as $\mathrm{x}=$ whatever it is.
2. Find the horizontal asymptote by using the following chart. Draw a horizontal dotted line at the horizontal asymptote and label it as $\mathrm{y}=$ whatever it is.

Situation	Example	Horizontal asymptote
top degree $<$ bottom degree	$y=\frac{x+1}{x^{2}-1}$	Horizontal asymptote is always $\boldsymbol{y}=\mathbf{0}$
top degree $=$ bottom degree	$y=\frac{x^{2}+1}{3 x^{2}+1}$	Find horizontal asymptote by putting the first term of the numerator over the first term of the denominator and simplifying.
		$y=\frac{x^{2}}{3 x^{2}}=\frac{1}{3}$
top degree $>$ bottom degree	$y=\frac{x^{2}+1}{x-3}$	There is no horizontal asymptote.

3. Find \mathbf{x} - intercept by setting the numerator equal to 0 and solving for x , or by using the calculator. Graph the x - intercept.
4. Find the \mathbf{y}-intercept by evaluating the function, $f(x)$, where $x=0$. Graph the $y-$ intercept.
5. Graph the function by evaluation the function at different values of x on either side of the vertical asymptote. You can either evaluate the function at different values of x by hand, or graph the function in $y^{1}=$ in your calculator and hitting $2^{\text {nd }} \rightarrow$ Graph/Table and using different coordinate values on the table to plot points on your paper.

Example: $y=\frac{x^{2}+2 x-3}{x^{2}-5 x-6}$
Vertical asymptotes:

Horizontal asymptote:

\mathbf{x}	$\mathbf{f (x)}$

x - intercept: y - intercept:

Graphing Rational Functions Classwork
Identify the vertical asymptotes, horizontal asymptote, x - intercepts, y - intercept of each.

1) $f(x)=\frac{1}{3 x^{2}+3 x-18}$
2) $f(x)=\frac{x-2}{x-4}$
3) $f(x)=\frac{x^{3}-x^{2}-6 x}{-3 x^{2}-3 x+18}$
4) $f(x)=\frac{x^{2}+x-6}{-4 x^{2}-16 x-12}$

Identify the vertical asymptotes, horizontal asymptote, x - intercepts, y - intercept of each. Then sketch the graph.
5) $f(x)=-\frac{4}{x^{2}-3 x}$

7) $f(x)=\frac{x+4}{-2 x-6}$

6) $f(x)=\frac{x-4}{-4 x-16}$

8) $f(x)=\frac{x^{3}-9 x}{3 x^{2}-6 x-9}$

9) $f(x)=\frac{3 x^{2}-12 x}{x^{2}-2 x-3}$

11) $f(x)=\frac{x^{2}+2 x}{-4 x+8}$

10) $f(x)=\frac{x^{3}-16 x}{-4 x^{2}+4 x+24}$

12) $f(x)=\frac{x+2}{2 x+6}$

