Name:

Vocabulary

Logarithm – The exponent, _____, to which the base _____, must be raised to equal _____, written as

Example:

Logarithmic form – An expression or an equation containing logarithms.

Example: The equation ______ is the logarithmic form of the exponential equation ______.

Common Logarithm – A logarithm to base 10. The common logarithm of _____ is written _____. For example,

______ since ______.

e (Eulor's number) – The base of the natural logarithm; a number commonly encountered when working with exponential functions to model growth, decay, continuously compounded interest. It is an irrational number.

 $e \approx$

Natural Logarithm – A logarithm to base *e*, where *e* is an irrational constant approximately equal to 2.718281828459.

Example:

Logarithmic & Exponential Functions as Inverses

In mathematics, an **inverse** function is a function that "reverses" another function. A logarithmic function is the **inverse** of an exponential function and vice versa. Find the inverse of the following functions.

Find the inverse of the following functions.

$$f(x) = 3^x$$
 $f(x) = \log_{0.5} x$ $f(x) = 3^{2x}$ $f(x) = \log_4 5x$

$$f^{-1}(x) = f^{-1}(x) = f^{-1}(x) = f^{-1}(x) =$$

Product Rule	Quotient Rule	Power Rule
$\log_b xy = \log_b x + \log_b y$	$\log_b \frac{x}{y} = \log_b x - \log_b y$	$\log_b x^y = y \log_b x$
Expand: $\log_3 5x =$	Expand: $\log_2 \frac{a}{6} =$	Expand: $\log q^4 =$
Simplify: $\log_4 7 + \log_4 n =$	Simplify: $\ln x - \ln 9 =$	Simplify $5 \ln a =$
Change of Base Formula	Log of the Base Rule	Log of 1 Rule
$\log_b x = \frac{\log x}{\log b}$	$\log_b b = 1$ $\ln e = 1$	$\log_b 1 = 0 \qquad \ln 1 = 0$
$\log_2 8 =$	log ₁₀₂ 102 =	log ₃₅ 1 =

Solving Logarithmic Equations

Solve for x

$3\log(x+4) = 6$	$\ln x = 4$
$\log_5(x+1) = 2$	$2\ln(3x) = 18$
$\log_9 x + \log_9 (x - 8) = 1$	$\ln(2x-3) + \ln(x+4) = \ln(2x^2 + 11)$
$\ln(2x+4) = x^2$	$\log(4p - 2) = \log(-5p + 5)$