Vocabulary

Logarithm - The exponent, \qquad , to which the base \qquad , must be raised to equal \qquad , written as

Example:
Logarithmic form - An expression or an equation containing logarithms.
Example: The equation \qquad is the logarithmic form of the exponential equation \qquad .

Common Logarithm - A logarithm to base 10. The common logarithm of \qquad is written \qquad . For example,
\qquad since \qquad .
\boldsymbol{e} (Eulor's number) - The base of the natural logarithm; a number commonly encountered when working with exponential functions to model growth, decay, continuously compounded interest. It is an irrational number.

$$
e \approx
$$

Natural Logarithm - A logarithm to base e, where e is an irrational constant approximately equal to 2.718281828459 .
Example:

Logarithmic \& Exponential Functions as Inverses

In mathematics, an inverse function is a function that "reverses" another function. A logarithmic function is the inverse of an exponential function and vice versa. Find the inverse of the following functions.
$f(x)=2^{x}$
$f^{-1}(x)=\log _{2} x$

Find the inverse of the following functions.
$f(x)=3^{x}$
$f(x)=\log _{0.5} x$
$f(x)=3^{2 x}$
$f(x)=\log _{4} 5 x$
$f^{-1}(x)=$

$$
f^{-1}(x)=
$$

$$
f^{-1}(x)=
$$

$$
f^{-1}(x)=
$$

Log Rules

Product Rule $\log _{b} x y=\log _{b} x+\log _{b} y$ Expand: $\log _{3} 5 x=$ Simplify: $\log _{4} 7+\log _{4} n=$	Quotient Rule $\log _{b} \frac{x}{y}=\log _{b} x-\log _{b} y$ Expand: $\log _{2} \frac{a}{6}=$ Simplify: $\ln x-\ln 9=$	\quad Power Rule $\log _{b} x^{y}=y \log _{b} x$ Expand: $\log q^{4}=$ Simplify $5 \ln a=$
Change of Base Formula $\log _{b} x=\frac{\log x}{\log b}$	$\begin{aligned} & \text { Log of the Base Rule } \\ & \log _{b} b=1 \quad \ln e=1 \\ & \log _{102} 102= \end{aligned}$	$\begin{aligned} & \text { Log of } 1 \text { Rule } \\ & \log _{b} 1=0 \quad \ln 1=0 \\ & \log _{35} 1= \end{aligned}$

Solving Logarithmic Equations

Solve for x

$3 \log (x+4)=6$	$\ln x=4$
$\log _{5}(x+1)=2$	$2 \ln (3 x)=18$
$\log _{9} x+\log _{9}(x-8)=1$	$\ln (2 x-3)+\ln (x+4)=\ln \left(2 x^{2}+11\right)$
$\ln (2 x+4)=x^{2}$	$\log (4 p-2)=\log (-5 p+5)$

