Logs and Exponentials Practice Test 2015-2016

Name:

Pro	perties of Logarithms (Expanding & Condensing)			
1	Use the properties of logarithms to evaluate $\log_2 8 + \log_2 32 + \log_2 16$.			
	A. 16 B. 4 C. 12 D. 10			
2	Write the expression as a single logarithm: $3\log_{\delta}q + 6\log_{\delta}v$			
	a. $\log_{\delta}(q^{3}\nu^{6})$ c. $(3+6)\log_{\delta}(q+\nu)$			
	b. $\log_{\delta}(qv^{3+6})$ d. $\log_{\delta}(q^{3}+v^{6})$			
3	Expand the logarithmic expression: $\log_3 \frac{d}{12}$			
	a. $\log_3 d - \log_3 12$ c. $\log_3 d$			
	log ₃ 12			
	b. $-d \log_3 12$ d. $\log_3 12 - \log_3 d$			
4	Write the equation in logarithmic form: $7^4 = 2401$			
	$a = 10\pi 2401 = 7$ $a = 10\pi 2401 = 4 = 7$			
	a. $\log_4 2401 = 7$ b. $\log_2 2401 = 4$ d. $\log_2 2401 = 4$			
5	Write the expression as a single natural logarithm: $3 \ln r = 2 \ln c$			
5	write the expression as a single natural togarithm. Surv 2 me			
	a. $\ln \frac{x^3}{c^2}$ b. $\ln(x^3 + c^2)$ c. $\ln(x^3 - c^2)$ d. $\ln x^3 c^2$			
6	Write the expression as a single natural logarithm $3 \ln a - \frac{1}{2} (\ln b + \ln c^2)$			
	a. $\ln \frac{3a}{0.5bc^2}$ b. $\frac{3}{2}\ln \frac{a}{bc^2}$ c. $\ln \frac{a^3}{bc}$ d. $\ln \frac{a^3}{c\sqrt{b}}$			
7	Which expression is the correct expansion of $\log_3 \left(\frac{x}{y}\right)^5$?			
	A. $5\log_3 x - \log_3 y$ B. $5\log_3 x + \log_3 y$ C. $5(\log_3 x + \log_3 y)$ D. $5(\log_3 x - \log_3 y)$			
8	Condense the following logarithmic expression. $4\log_5 a - 3\log_5 b$			
9	Write the equation $\log_5 25 = 2$ in exponential form.			
Sol	ving Logarithmic & Exponential Equations			

Solving Logarithmic & Exponential Equations 10 Use the Change of Base Formula to solve $15^{2\kappa} = 36$ Round to the nearest ten-thousandth

10	Use the change of base formula to solve $15^{-1} = 50$. Round to the hearest ten-thousandth.				
	a. 0.6616 b. 2.6466	c. 1.7509	d. 1.9091		
11	Which value of x satisfies the equation $5(18^x) = 26$? Round to the nearest ten-thousandth.				

12	Solve $\log(4x + 10)$) = 3.			
	a. <u>7</u>	b. <u>495</u>	c. 250	d. 990	
	4	2			
13	Solve $\ln 2 + \ln x =$	5. Round to the nea	arest tenth, if necessary	<i>.</i>	
	a. 50,000	b. 74.2	c. 10	d. 3	
14	Solve. Round to the	he nearest thousand	th: 6e ^{4x} – 2 = 3		
	a0.448	b. 0.327	c. 0.067	d0.046	
15	Solve $5(6^{3m}) = 2$	0. Round to the near	arest ten-thousandth.		
16	What is the solution	on of $2e^{x-3} = 16$?			

Applications & Exponential Growth and Decay

17	The pH of a liquid is a measure of how acidic or basic it is. The concentration of hydrogen ions in a liquid				
	is labeled $[H^+]$. Use the formula pH = $-\log[H^+]$ to find the pH level, to the nearest tenth, of a liquid with				
	$[H^+]$ about 6.5 × 10 ⁻³ .				
	a3.8 b. 3.8 c. 2.2 d. 3.0				
18	Suppose you invest \$1600 at an annual interest rate of 4.6% compounded continuously. How much will				
	you have in the account after 4 years?				
10	a. \$800.26 b. \$6,701.28 c. \$10,138.07 d. \$1,923.23				
19	The amount of money in an account with continuously compounded interest is given by the formula $A = B a^{T} t$, where B is the principal r is the engula interest rate, and t is the time in years. Calculate to the				
	$A = Pe^{r_0}$, where P is the principal, r is the annual interest rate, and t is the time in years. Calculate to the				
	continuously at 4%. Round to the nearest tenth.				
20	Find the annual percent increase or decrease that $y = 0.35(2.3)^*$ models.				
	a. 230% increase c. 30% decrease				
21	b. 130% increase d. 65% decrease				
21	An initial population of 4/5 quali increases at an annual rate of 26%. Write an exponential function to model the quait population. What will the approximate population be after 3 years?				
	model the quali population. What will the approximate population be after 5 years:				
	a. $f(x) = 475(26)^x$; 8,348,600 c. $f(x) = (475 \cdot 0.26)^x$; 1,883,653				
	b. $f(x) = 475(1.26)^x$; 950 d. $f(x) = 475(0.26)^x$; 950				
22	In a particular region of a national park, there are currently 330 deer, and the population increases at a rate				
	of 11%				
	a. Write and exponential function to model the deer population.				
	b Explain what each value in the model represents				
	b. Explain what each value in the model represents.				
	c. Predict the number of deer that will be in the region after five years.				
	d. How many years will it take for the deer population to be 1000? Round to the nearest 10 th of a year.				