Operations with Complex Numbers (Due 9/16 A-Day, 9/17 B-Day)
Definition of Complex Numbers
Name:

1	What is i ? Is it a variable? Why or why not?	2	Define a complex number in your own words.
3	$\begin{aligned} & \text { Give } 2 \text { examples of complex numbers. } 4 \\ & \text { What is } i \text { equal to? Fill up the space in this box } \\ & \text { with your answer. }\end{aligned}$	6	$\begin{array}{r}\text { You and your friend are talking about } i \text { on the bus } \\ \text { ride home. Your friend says that } i \text { is the "negative } \\ \text { square root of one." Is your friend correct? Why } \\ \text { or why not? }\end{array}$
5		$\begin{array}{l}\text { Simplify } \sqrt{-8}\end{array}$	

Cycle of i

${ }^{1}$	i^{72}	${ }^{9}$	i^{91}
${ }^{3} i^{17}$	${ }^{4}$	i^{42}	
5	i^{44}	${ }^{6}$	i^{51}

Simplifying Complex Numbers

1	$\sqrt{-147}$	2	$\sqrt{-36}$
3	$\sqrt{-72}$	4	$\sqrt{-12}$
5	$\sqrt{-128}$	6	$\sqrt{-512}$

Adding/Subtracting Complex Numbers

1	$i+6 i$		2

Multiplying Complex Numbers

1	$5 i \cdot i \cdot-2 i$	2	$-4 i \cdot 5 i$

3	$7 i \cdot 3 i(-8-6 i)$	${ }^{4}$	$(-2-i)(4+i)$
5	$(1-7 i)^{2}$	6	$(-2-2 i)(-4-3 i)(7+8 i)$

Rationalizing Imaginary Denominators

1	$\frac{2}{8 i}$	${ }^{2}$	$\frac{6}{-4 i}$
3	$\frac{6+8 i}{9 i}$	4	$\frac{8 i}{-1+3 i}$
5	$\frac{-5-9 i}{9+8 i}$	6	$\frac{-5-3 i}{7-10 i}$

Complex Numbers

Cycle of i
Any number in form $\mathrm{a}+\mathrm{b} i$, where a and b are real numbers and i is imaginary.
$i^{0}=1$

$$
i^{1}=i
$$

$$
i^{5}=i
$$

$$
i^{2}=-1
$$

$$
i^{6}=-1
$$ imaginary number?

$i^{3}=-i$

Adding/Subtracting Complex Numbers
When adding or subtracting complex numbers, combine like terms.

Ex: $\quad(8-3 i)+(2+5 i)$

$$
(8+2)+(-3 i+5 i)
$$

$10+2 i$
Rationalizing Imaginary Numbers
Lets do an example:
Ex: $\frac{8 i}{1+3 i}$
$\frac{8 i}{1+3 i} \cdot \frac{1-3 i}{1-3 i} \quad \begin{aligned} & \text { Rationalize using } \\ & \text { the conjugate }\end{aligned}$

Next
What's the next step?

