Operations with Complex Numbers (Due 9/16 A-Day, 9/17 B-Day)

De	finition of Complex Numbers	,	Name:
1	What is <i>i</i> ? Is it a variable? Why or why not?	2	Define a complex number in your own words.
3	Give 2 examples of complex numbers.	4	You and your friend are talking about <i>i</i> on the bus ride home. Your friend says that <i>i</i> is the "negative square root of one." Is your friend correct? Why or why not?
5	What is <i>i</i> equal to? Fill up the space in this box with your answer.	6	Simplify √ − 8

Cycle of i

1	i ⁷²	2	i ⁹¹
3	i ¹⁷	4	i ⁴²
5	i ⁴⁴	6	i ⁵¹

Simplifying Complex Numbers

Adding/Subtracting Complex Numbers

1	i + 6i	2	3 <i>i</i> + <i>i</i>
3	-8 <i>i</i> - 7 <i>i</i>	4	-1 - 8i - 4 - i
5	-3 + 6i - (-5 - 3i) - 8i	6	7 + <i>i</i> + 4 + 4

Multiplying Complex Numbers

1	$5i \cdot i \cdot -2i$	2	$-4i \cdot 5i$

3	$7i \cdot 3i(-8-6i)$	4	(-2-i)(4+i)
5	$(1-7i)^2$	6	(-2 - 2i)(-4 - 3i)(7 + 8i)

Rationalizing Imaginary Denominators

Examples:	
Definition of Complex Numbers	Cycle of <i>i</i>
Complex Numbers	Cycle of i
Any number in form a+b <i>i</i> , where a and b are real numbers and <i>i</i> is imaginary.	$i^{0} = 1$ $i^{4} = 1$ $i^{1} = i$ $i^{5} = i$
What is an imaginary number?	$i^{2} = -1$ $i^{6} = -1$ $i^{3} = -i$ $i^{7} = -i$
Simplifying Complex Numbers	Adding/Subtracting Complex Numbers When adding or subtracting
1. $-5i \cdot -3i = -15$ 2. $3\sqrt{6} \cdot \sqrt{-3} = 9i\sqrt{2}$	complex numbers, combine like terms. Ex: (8-3i) + (2+5i) (8+2) + (-3i+5i)
$3. l^{2} = l$	10 + 2i
Multiplying Complex Numbers	Rationalizing Imaginary Numbers
	Lets do an example:
Lets do another example. (3-2i)(5+3i)	$Ex: \frac{8i}{1+3i}$
F = 0 I L $15 + 9i - 10i - 6i^2$	$\frac{8i}{1+3i} \cdot \frac{1-3i}{1-3i}$ Rationalize using the conjugate
$15 + 9i - 10i + 6$ $i^2 = -1$ Next Don't forget to combine 9i and -10i.	Next What's the next step?