Simplifying Radical Expressions Notes

Simplifying Radical Expressions $\boldsymbol{\rightarrow}$ reducing a radical to its simplest form.
Prime Factorization \rightarrow the set of prime numbers that multiply to give the original number. A prime number is any number that is only divisible by 1 and itself.

Factor Tree \rightarrow a diagram that you can use to find the factors of a number.

Method 1: Steps for simplifying radical expressions

1. If there are any integers (numbers) under the radical, use a factor tree to find the prime factorization.
2. Break down the expression under the radical into all of its factors.
3. Circle matching numbers or variables in groups of n (whatever the index is).
4. Simplify. Leave any left over numbers or variables inside the radical.

Method 2: See examples on Pages 363 and 368 of textbook. You need to memorize perfect squares \& cubes!
Simplify the following radical expressions.

Method 1	Method 2
Ex. 1 $\begin{gathered} \sqrt{24 x^{7} y^{3}} \\ \sqrt{2 \cdot 2 \cdot 2 \cdot 3 \cdot x \cdot y \cdot y \cdot y} \\ 2 \cdot x \cdot x \cdot x \cdot y \cdot \sqrt{2 \cdot 3 \cdot x \cdot y} \\ 2 x^{3} y \sqrt{6 x y} \end{gathered}$	
$\begin{aligned} & \text { Ex. } 2 \\ & \qquad \begin{array}{l} \sqrt[3]{54 a^{5} b^{9}} \\ \sqrt[3]{3 \cdot 3 \cdot 3 \cdot 2 \cdot a \cdot a \cdot a \cdot a \cdot a \cdot b \cdot b} \\ 3 \cdot a \cdot b \cdot b \cdot b \cdot \sqrt[3]{2 \cdot a \cdot a} \\ 3 a b^{3} \sqrt[3]{2 a^{2}} \end{array} \end{aligned}$	
Ex. 3 $\begin{gathered} \sqrt[4]{64 r^{3} v^{6}} \\ \sqrt[4]{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot r \cdot r \cdot r \cdot v \cdot v \cdot v \cdot v \cdot v \cdot v} \\ 2 \cdot v \cdot \sqrt[4]{2 \cdot 2 \cdot r \cdot r \cdot r \cdot v \cdot v} \\ 2 v \sqrt[4]{4 r^{3} v^{2}} \end{gathered}$	

