Simplifying Radical Expressions Notes

Simplifying Radical Expressions \rightarrow reducing a radical to its simplest form.

Prime Factorization \rightarrow the set of prime numbers that multiply to give the original number. A prime number is any number that is only divisible by 1 and itself.

Factor Tree \rightarrow a diagram that you can use to find the factors of a number.

Method 1: Steps for simplifying radical expressions

- 1. If there are any integers (numbers) under the radical, use a factor tree to find the prime factorization.
- 2. Break down the expression under the radical into all of its factors.
- 3. Circle matching numbers or variables in groups of *n* (whatever the index is).
- 4. Simplify. Leave any left over numbers or variables inside the radical.

Method 2: See examples on Pages 363 and 368 of textbook. You need to memorize perfect squares & cubes!

Simplify the following radical expressions.

Method 1	Method 2
Ex. 1	
$\sqrt{24x^7y^3}$	
$2 \cdot 2 \cdot 2 \cdot 3 \cdot x \cdot y \cdot y \cdot y$	
$2 \cdot x \cdot x \cdot x \cdot y \cdot \sqrt{2 \cdot 3 \cdot x \cdot y}$	
$2x^3y\sqrt{6xy}$	
Ex. 2	
$\sqrt[3]{54a^5b^9}$	
3/0.0.0.0	
$\sqrt{3} \cdot 3 \cdot 3 \cdot 2 \cdot a \cdot a \cdot a \cdot a \cdot a \cdot b \cdot b \cdot b \cdot b \cdot b$	
$3 \cdot a \cdot b \cdot b \cdot b \cdot \sqrt[3]{2 \cdot a \cdot a}$	
$3ab^3\sqrt[3]{2a^2}$	
Ex 3	
$\sqrt[4]{64r^3v^6}$	
$\sqrt[4]{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot r \cdot r \cdot r \cdot $	
$2 \cdot v \cdot \sqrt[4]{2 \cdot 2 \cdot r \cdot r \cdot r \cdot v \cdot v}$	
$2v\sqrt[4]{4r^3v^2}$	