Dividing Complex Numbers (Rationalizing Imaginary Numbers) Qualifier Simplify.

$\frac{-10-5 i}{-6+6 i}$	$\frac{1}{-8-5 i}$
$\frac{i}{-2-8 i}$	$\frac{4}{-3-6 i}$
$\frac{-3-7 i}{7+10 i}$	$\frac{-5-9 i}{9+8 i}$
$\frac{-4+10 i}{3+4 i}$	$\frac{-5-3 i}{7-10 i}$
$\frac{-4-4 i}{4 i}$	$\frac{-1+i}{-5 i}$
$\frac{-6-i}{i}$	$\frac{2+5 i}{-i}$
$\frac{-4-4 i}{4 i}$	$\frac{3}{-i}$

Distance Formula Qualifier

Find the distance between each pair of points.
13)

15)

17)

19) $(0,-2),(-5,-1)$
21) $(3,8),(9,10)$
23) $(-8,10),(-6,7)$
14)

16)

18)

20) $(6,4),(-5,-1)$
22) $(10,1),(9,-4)$
24) $(-5,6),(8,-4)$

Solving Quadratic Equations by Completing the Square Qualifier Solve each equation by completing the square.
15) $5 v^{2}-21=10 v$
16) $4 v^{2}+16 v=65$
17) $7 b^{2}-14 b-56=0$
18) $2 n^{2}+12 n+10=0$
19) $n^{2}+13 n+22=7$
20) $5 n^{2}+19 n-68=-2$
21) $r^{2}-9 r-38=-9$
22) $3 x^{2}+20 x+36=4$
23) $x^{2}+7 x-45=7$
24) $n^{2}+19 n+66=6$

Problem Task Qualifier

Solve the following quadratic equation by using the quadratic formula.

$$
f(x)=2 x^{2}-4 x-6
$$

Write the quadratic formula here:
Show work in the space provided:

1. Find the values of h and k . 2. Find the coordinates of the vertex. 3. Find the equation of the AOS. 4. Determine if the function has a maximum or minimum. 5. Evaluate the function at 5 values for x and fill in the table below.

$$
f(x)=2 x^{2}-4 x-6
$$

$\mathrm{h}=$
$\mathrm{k}=$

Vertex $=$

AOS:
maximum or minimum?

\mathbf{x}	$\mathbf{f (x)}$

A system of equations is shown below.

$$
\begin{gathered}
f(x)=2 x^{2}-4 x-6 \\
f(x)=2 x-6
\end{gathered}
$$

1. What are the solutions (points of intersection) of the above system of equations?
2. What is the distance between the points of intersection of the system?
